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The conformal covariance of correlation functions is checked in the second-order transition induced by
random bonds in the two-dimensional eight-state Potts model. The decay of correlations is obtetirsetsfer
matrix calculations in a cylinder geometry, and large-scale Monte Carlo simulations provide access to the
correlations and the profiles inside a square with free or fixed boundary conditions. In both geometries,
conformal transformations constrain the form of the spatial dependence, leading to accurate determinations of
the order parameter scaling index, in good agreement with previous independent determinations obtained
through standard techniques. The energy density exponent is also com@ite63-651X98)50812-4

PACS numbe(s): 64.60.Cn, 05.56-q, 05.70.Jk, 64.60.Fr

It is well known that quenched randomness can deeplyorks, on the other hand, its powerful techniques might be
affect the critical properties at second-order phase transitioraspplied with no restriction to investigate the critical behavior
[1], and is liable to smooth first-order transitions, eventuallyof 2D random systemfs3].
leading to continuous transitiong,3]. In the 2D random-bond Ising model, both analy®¢ and

In random systems, owing to strong inhomogeneities innumerical result§10] are available. Transfer matri@M)
herent in disorder, the usual symmetry properties required bgalculations were also used to study the correlation function
conformal invariancéCl) [4] do not hold. However, by av- decay along strips and to compute the conformal anomaly
eraging over disorder realizationglenoted by[---].,), (defined as a universal amplitude in finite-size corrections to
translation and rotation invariance are restored, and it is gerfhe free energy[11] and, since disorder is marginally irrel-
erally believed that conformal invariance techniques shoul@vant in the 2 Ising model, conformal invariance tech-
apply in principle. Recent results based on this assumptiofiques were indeed efficient. At randomness-induced
have recently been obtained at randomness-induced secorfcond-order phase transitions, a direct comparison between
order transitiong5,6], but clear evidence of the validity of the results deduced from conformal invariance, and standard
conformal invariance is still missing. The question is of bothtechniques, such as finite-size scalif§SS Monte Carlo
fundamental and practical interest. From the fundamentdMC) simulations, have nevertheless not yet been made. Af-
point of view, situations are known where a diverging corre-ter the pioneering work of Imry and Wortis, the first large-
lation lengthdoes not guaranteéne validity of CI. A few  scale MC simulations devoted to the influence of quenched
years ago, lattice animals were indeed found tmbecon- ~ fandomness, in a system whose pure version undergoes a
formally invariantalthough they display isotropic critical be- Strong first-order phase transition, were applied to the case of
havior with correlation lengths satisfying the usual scalingthe eight-state random-bond Potts moteBPM) [12].

é~L with the system sizg7]. If conformal invariance The Hamiltonian of the system with quenched random
nearest-neighbor interactions is  written: — 8H

=3, Ky 8s o, Where the spins, located at site®f a
(r.r’) O

* Author to whom correspondence should be addressed. Electrongguare lattice, take the values=1,2,...,9. The coupling
address: berche@Ips.u-nancy.fr strengths are allowed to take two different vallleand K’
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=Kr with probabilitiesp and 1— p, respectively. If both cou-
plings are distributed with the same probabilips 0.5, the

system is, on average, self-dual and the critical point is ex-1p2

actly given by duality relations:gfc—1)(eKe"—1)=q [13].

This model has again been carefully investigated recently104

using both MC simulation§14,15 and TM calculations
[16]. The bulk magnetization scaling inde=pg/v is q

dependenf16]. Up to now the most refined direct estimate 1

of x?, in the caseq=8 is probably a FSS analysis due to
Picco (x°=0.150-0.155)[15], where it was shown that the
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random fixed point is reached in the range8—20, while U

crossover effects perturb the results outside this domain. As giG. 1. Average correlation function, most probable value, and
mentioned above, TM calculations have already been pekourth-order cumulant expansion, obtained from 63 436 replicas for
formed on the RBPM16], but with a rather weak disorder g strip of sizeL=6 (r = 10).

r=2, leading tox2=0.1471), while standard FSS results

are in the range<3:0.158— 0.175[15]. The discrepancy uted over the bonds of the system. The computations are then
may presumably be attributed to crossover effects. performed with 16 iterations of the transfer matrix, and the

Due to the increasing literature devoted to second-ordefinal Lyapunov exponent is averaged over 20 disorder con-
induced phase transitions, in this Rapid Communication, oufigurations.
investigation deals with the self-dual eight-state RBPM. We  Since our purpose is to check the predictions of conformal
report results of TM calculations on the strip and MC simu-symmetry, which are supposed to be satisfiedalgrage
lations in a square geometry, which support the assumptioquantities i.e.,[{G,(u))],, , our first aim is to show that, in
of conformal covariance of order parameter correlation funcspite of the lack of self-averaging, our numerical experi-
tions and profiles. We particularly compare independent dements lead to well-defined averages. In RéB], Jacobsen
terminations of the bulk magnetization exponent, resulting irand Cardy argued that in the RBPMQris self-averaging
good agreement between standard and conformal invarianeghile G is not. Exploiting duality, they computed
techniques. Different large-scale simulations are performefiin{(G,(u))],, via the free energy of a system in the presence
in two types of restricted geometridstrips and squargs of a seam of frustrated bonds and a cumulant expansion en-
with a ratior chosen in the range=8—20. The crossover abled them to deduce the behavior[@G (u))],, . In our
regimer =2 is also investigated. approach, we are first interested in the probability distribu-

In the strip geometry, we used the connectivity transfertion of the correlation function.
matrix formalism of Blae and Nightingald17]. For a strip The most probable valué'P(u) and the average corre-
of size L with periodic boundary conditions, the leading lation function[(G,(u))].,, as well as the averaged loga-
Lyapunov exponent follows from the Furstenberg methodyithm [In{G,(u))]s,, can then be deduced at any valueuof
Ao(L)=limp_..(1/m) In||(IGL,TW)[vo)||, where Ty is the  Compatible behaviors are found f&TP(u) andel™CoWa,
transfer operator between columkis 1 andk, and|vo) isa  which confirm the essentially log-normal character of the
suitable unit initial vector. The leading Lyapunov exponentprobability distribution[20], in agreement with Cardy and
determines the free energfs(L) =—L 'Ao(L). Foraspe- Jacobsen. It is thus necessary to perform averages over a
cific disorder realization, the spin-spin correlation functionjarger number of samples fof(G,(u))],, than for
(Go(u)=(a(05,,,,)~1)/(q—1), where(:--) denotes the  [In(G,(u))1,, to get the same relative errors. A cumulant ex-
thermal average, is given by the probability that the spingansion enables us to reconstriig,(u))],, and to com-
along some row, at columnsand j+u, are in the same pare to the values obtained by averaging directly over the
state: samples. The results in Fig. 1 strengthen the credibility of the
direct average and also clearly show that the cumulant ex-
pansion up to fourth order still strongly fluctuates compared
10 [{G o(U))Tay -

We will now concentrate on the results that follow from
the assumption of conformal covariance of the averaged cor-
relation functions. In the infinite complex plagze=x+iy at
the critical point, the correlation function exhibits the usual

(5 )= (0lgy(IZ}*T)dj |O)
el OO

J

oY)

where|0) is the ground state eigenvectdr, is the transfer
matrix in the extended Hilbert spa¢&8], g; is an operator
that identifies the cluster containing , andd;, gives the b
appropriate weight depending on whether or oot is in  algebraic decay(G,(r))]a, =constr 2, wherer=|z|.
the same state as;. Under a conformal mapping(z), the correlation functions

It is well known that in disordered spin systems, theof a conformally invariant 2D system transforms according
strong fluctuations from sample to sample can induce averto
age difficulties[19]. For that reason we paid attention to
check, by a careful analysis of the correlation function prob-
ability distribution, that self-averaging problems do not alter
the mean valueg20]. In order to reduce sample fluctuations, The logarithmic tranformatiow=L/27Inz is known to map
we furthermore considerezhnonical disordera situation in  the z plane onto an infinite strigzg=u+iv of width L with
which exactly the same amount of both couplings is distrib-periodic boundary conditions in the transverse direction. Ap-

Go(W1, W) = W (29)] o)W (2)]| *0G(21,22).  (2)
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FIG. 2. Magnetic scaling index deduced from the algebraic de-

cay of the average correlation function along the strip of kizes a

function of L~ 1.

in the square (= 10).

k()

FIG. 3. Rescaled correlation function along six const curves

plying Eqg. (2) in the random system, one gets the usual exorder realizations. Averaging the results at differerg, one

ponential decay along

the strif(G,(u))],, =const
X exf] —(27/L)xu], where the scaling index”. can be de-
duced from a semilog plot. For each strip size<(2—9),

obtains x2=0.152t 0.003. Again, a compatible value is
found atr =20 while it disagrees at=2.
Owing to the unknown scaling functiof( ), the deter-

we realized 40 000 disorder configurations in four indepenmination is not extremely accurate, since a few points are
dent runs, which allowed us to define mean values and errassed for the fits. It can nevertheless be improved if one con-
bars. The exponent follows from an exponential fit in thesiders the magnetization profile inside a square with fixed
rangeu=5-10. For r=10, the resulting values plotted boundary conditions. Since it is a one-point function, its de-

againstL ~1, converge in the.—o limit, towards the final

cay from the distance to the surface in the semi-infinite ge-

estimatex®=0.1496+ 0.0009 shown in Fig. 2. A consistent ometry is fixed, up to a constant prefactp(o(z))]a,

value is obtained in the case=20, while in the weak dis-

b
~y %o, The local order parameter is defined, according to

order limit the behavior is drastically different, and strong Ref. [24], as the probability for the spin at sit¢ in the
crossover effects would be expected for larger strip sizes. square, to belong to the majority orientation. After the

Another restricted geometry, already used in previousschwarz-Christoffel mapping, one gets the following expres-
FSS MC simulations, is the square geometry. The Schwarzion for the average profile in the square geometry:

Christoffel mapping {=(a/2K)F(z,k),

z=sm(2K¢)/a]

=sn{[(2K{¢)/a],k}, whereF(z,k) is the elliptic integral of

the first kind and sn{,k) is the Jacobian elliptic sing21],
transforms the upper half plane inside the interior of a square

—al2<sRe(()<a/2,0<sIm({)<a. Here, K=K(k) is the

complete elliptical integral of the first kind and the modulus
kis a solution oK (k)/K (y1—k?) = %. The correlation func-
tion in the semi-infinite geometry is known to take the form

[22]

G, (z1,2)=consi (y1y) *m(w), 3)

where the dependence en=y,y/|z;—z|? of the universal

[((£)}]ay = cOnsi

=22\

Im(z(2))

. (6)

This expression, of the forr[m(o(g))]av:[f(z)/y]xg, holds
for any point inside the square. It allows an accurate deter-
mination of the critical exponentxf,=0.1499+0.0001 for

r=10) via a log-log plot shown in Fig. 4. We note that in the

scaling functiony is constrained by the special conformal

transformation. In the random situation one can again use the 10°
transformation equatio(®) to write the correlations between
{,=1, close to a side of the square, and any point inside it, as

follows:

[(Gol0)]av=CONSK[ | (2)IM(Z(£)] i w). (&) 10”

Taking the logarithm of both sides, the bulk critical exponent
xfj can thus be deduced from a linear fit alomg=const

curves in the square:

IN[{G,({))la=const—x2Ink()+INy(w), (5 107 |

caser =2, the corresponding curve exhibits a crossover be-
tween small and large distances, with clearly different expo-
nents close to 0.128 and 0.160, respectively.

[<o(§)>]
0.1499(1)

I S ————

Al<e(0)>]
1.011(8)

with k(2)=Im@(O))I[1-Z2() [ 1-K*Z2(2)]] 712

The results are shown in Fig. 3€10), in which the
Swendsen-Wang algorithm has been U] for systems of

flz)ly

size 10X 101 and an average was performed over 3000 distaw fits are over 10ddata points.

0

10

FIG. 4. Rescaled magnetization and energy density profiles in-
side the square for 3000 disorder realizations 10). The power
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TABLE |. Comparison between FSS and CI determinations ofnone of them has a real meaning, since they would presum-

the bulk magnetic scaling dimension in the-8 RBPM. The quan-

ably be affected by strong crossover effects at very large

tity that was studied is indicated in the table as well as the geometrgizes. Since the study of the critical profile with fixed bound-

and the numerical technique.

FSS(MC) Conformal invariance

Square Strip Strip Square
SWA wP ™S T™¢ SW
[(Mp)] [(Mp)] [KG(u)] [(G(u)] [G()I® [(a(d)]®
r=10 0.1531)
0.1533) 0.1522) 0.14969) 0.1523) 0.14991)
r=20 0.1501)

0.1522) 0.147419) 0.1467) 0.14622)

r=2 0.1672) 0.1421)

0.1583) 0.1424) 0.12565) 0.28321) 0.128-0.160

3MC simulations (Swendsen-Wang algorithma=<100, ~500
samples from Ref.[14].

®MC simulations(Wolff algorithm, ~10° samples from Ref.[15].
The two values refer to fits in the rangas- 20— 100 and 50—200.
°TM calculations {=1—7, 1¢ sample} from Refs.[6,16].

4TM calculations [ =2—9, 4x10* sample} this work.

®MC simulations =101, 3x10° sample} this work.

ary conditions inside the square is very accurate, the energy
scaling indexxi’:d—l/v can also be obtained through the
same technique. This dimension has been calculated in pre-
vious studieg6,14] but different results were obtained, pos-
sibly contradicting the inequality?al. Here, the local en-
ergy density[(e({))]a, is computed by the average over
four bonds on each plaquette. It includes a constant bulk
contribution[{e) 4, , Which is obtained by the extrapolation
to y—o of the profiles with free and fixed boundary condi-
tions (BC) , respectively. Atr =10, both BC's yield consis-
tent values[(eg)],,=0.6974 and 0.6978. The quantity
Al{e(D))]a=[({e({))]a,—0.6976 is then studied as in Eq.
(6), and leads to"=1.011+0.008 (Fig. 4). Since the nu-
merical data are very small, there is an important dispersion
but the accuracy of the fit remains correct due to the huge
number of data points (18D

In this Rapid Communication, we have shown that con-
formal invariance techniques can be successfully applied to
random systems, and that they lead to refined investigations
of the critical properties. The accuracy, compared to standard
techniques, is increased, especially through the magnetiza-
tion profile inside a square where all of the lattice points
enter the fit. The critical exponents are finally quite close to

A summary of our results, compared to independent FS$,¢ rational values® = 3/20 andx®=1.
determinations of the magnetic scaling index, are given in 7 ¢

Table I. Apart from the crossover regimerat 2, the agree-
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assumption of conformal covariance of correlation functiongions were performed at the CNUSC in Montpellier under
and profilesat the random fixed poinOn the other hand, in  Project No. C981009 and the CCH in Nancy. The Labora-
the crossover regime, in which the fixed point is not yettoire de Physique des Mataux is a UniteMixte de Recher-
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