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The conformal covariance of correlation functions is checked in the second-order transition induced by
random bonds in the two-dimensional eight-state Potts model. The decay of correlations is obtainedvia transfer
matrix calculations in a cylinder geometry, and large-scale Monte Carlo simulations provide access to the
correlations and the profiles inside a square with free or fixed boundary conditions. In both geometries,
conformal transformations constrain the form of the spatial dependence, leading to accurate determinations of
the order parameter scaling index, in good agreement with previous independent determinations obtained
through standard techniques. The energy density exponent is also computed.@S1063-651X~98!50812-4#
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It is well known that quenched randomness can dee
affect the critical properties at second-order phase transit
@1#, and is liable to smooth first-order transitions, eventua
leading to continuous transitions@2,3#.

In random systems, owing to strong inhomogeneities
herent in disorder, the usual symmetry properties required
conformal invariance~CI! @4# do not hold. However, by av
eraging over disorder realizations~denoted by @•••#av),
translation and rotation invariance are restored, and it is g
erally believed that conformal invariance techniques sho
apply in principle. Recent results based on this assump
have recently been obtained at randomness-induced sec
order transitions@5,6#, but clear evidence of the validity o
conformal invariance is still missing. The question is of bo
fundamental and practical interest. From the fundame
point of view, situations are known where a diverging cor
lation lengthdoes not guaranteethe validity of CI. A few
years ago, lattice animals were indeed found to benot con-
formally invariantalthough they display isotropic critical be
havior with correlation lengths satisfying the usual scal
j;L with the system size@7#. If conformal invariance
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works, on the other hand, its powerful techniques might
applied with no restriction to investigate the critical behav
of 2D random systems@8#.

In the 2D random-bond Ising model, both analytic@9# and
numerical results@10# are available. Transfer matrix~TM!
calculations were also used to study the correlation func
decay along strips and to compute the conformal anom
~defined as a universal amplitude in finite-size corrections
the free energy! @11# and, since disorder is marginally irre
evant in the 2d Ising model, conformal invariance tech
niques were indeed efficient. At randomness-induc
second-order phase transitions, a direct comparison betw
the results deduced from conformal invariance, and stand
techniques, such as finite-size scaling~FSS! Monte Carlo
~MC! simulations, have nevertheless not yet been made.
ter the pioneering work of Imry and Wortis, the first larg
scale MC simulations devoted to the influence of quenc
randomness, in a system whose pure version undergo
strong first-order phase transition, were applied to the cas
the eight-state random-bond Potts model~RBPM! @12#.

The Hamiltonian of the system with quenched rando
nearest-neighbor interactions is written: 2bH
5( (r ,r8)K rr 8dsr ,sr8

, where the spins, located at sitesr of a

square lattice, take the valuess r51,2,. . . ,q. The coupling
strengths are allowed to take two different valuesK andK8
ic
R6899 © 1998 The American Physical Society
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5Kr with probabilitiesp and 12p, respectively. If both cou-
plings are distributed with the same probability,p50.5, the
system is, on average, self-dual and the critical point is
actly given by duality relations: (eKc21)(eKcr21)5q @13#.
This model has again been carefully investigated rece
using both MC simulations@14,15# and TM calculations
@16#. The bulk magnetization scaling indexxs

b5b/n is q
dependent@16#. Up to now the most refined direct estima
of xs

b in the caseq58 is probably a FSS analysis due
Picco (xs

b50.15020.155) @15#, where it was shown that th
random fixed point is reached in the ranger 58220, while
crossover effects perturb the results outside this domain
mentioned above, TM calculations have already been
formed on the RBPM@16#, but with a rather weak disorde
r 52, leading toxs

b50.142(1), while standard FSS result
are in the rangexs

b50.15820.175 @15#. The discrepancy
may presumably be attributed to crossover effects.

Due to the increasing literature devoted to second-or
induced phase transitions, in this Rapid Communication,
investigation deals with the self-dual eight-state RBPM. W
report results of TM calculations on the strip and MC sim
lations in a square geometry, which support the assump
of conformal covariance of order parameter correlation fu
tions and profiles. We particularly compare independent
terminations of the bulk magnetization exponent, resulting
good agreement between standard and conformal invari
techniques. Different large-scale simulations are perform
in two types of restricted geometries~strips and squares!
with a ratio r chosen in the ranger 58220. The crossover
regimer 52 is also investigated.

In the strip geometry, we used the connectivity trans
matrix formalism of Blöte and Nightingale@17#. For a strip
of size L with periodic boundary conditions, the leadin
Lyapunov exponent follows from the Furstenberg meth
L0(L)5 limm→`(1/m) lnuu()k51

m Tk)uv0&uu, where Tk is the
transfer operator between columnsk21 andk, anduv0& is a
suitable unit initial vector. The leading Lyapunov expone
determines the free energy:f 0(L)52L21L0(L). For a spe-
cific disorder realization, the spin-spin correlation functi
^Gs(u)&5(q^ds js j 1u

&21)/(q21), where^•••& denotes the
thermal average, is given by the probability that the sp
along some row, at columnsj and j 1u, are in the same
state:

^ds js j 1u
&5

^0ugj~Pk5 j
j 1u21Tk8!dj 1uu0&

^0uPk5 j
j 1u21Tku0&

, ~1!

whereu0& is the ground state eigenvector,Tk8 is the transfer
matrix in the extended Hilbert space@18#, gj is an operator
that identifies the cluster containings j , anddj 1u gives the
appropriate weight depending on whether or nots j 1u is in
the same state ass j .

It is well known that in disordered spin systems, t
strong fluctuations from sample to sample can induce a
age difficulties@19#. For that reason we paid attention
check, by a careful analysis of the correlation function pro
ability distribution, that self-averaging problems do not al
the mean values@20#. In order to reduce sample fluctuation
we furthermore consideredcanonical disorder, a situation in
which exactly the same amount of both couplings is distr
-

ly

s
r-

er
r

e
-
n
-

e-
n
ce
d

r

:

t

s

r-

-
r

-

uted over the bonds of the system. The computations are
performed with 106 iterations of the transfer matrix, and th
final Lyapunov exponent is averaged over 20 disorder c
figurations.

Since our purpose is to check the predictions of conform
symmetry, which are supposed to be satisfied byaverage
quantities, i.e., @^Gs(u)&#av , our first aim is to show that, in
spite of the lack of self-averaging, our numerical expe
ments lead to well-defined averages. In Ref.@16#, Jacobsen
and Cardy argued that in the RBPM, lnG is self-averaging
while G is not. Exploiting duality, they computed
@ ln^Gs(u)&#av via the free energy of a system in the presen
of a seam of frustrated bonds and a cumulant expansion
abled them to deduce the behavior of@^Gs(u)&#av . In our
approach, we are first interested in the probability distrib
tion of the correlation function.

The most probable valueGs
mp(u) and the average corre

lation function@^Gs(u)&#av , as well as the averaged loga
rithm @ ln^Gs(u)&#av , can then be deduced at any value ofu.
Compatible behaviors are found forGs

mp(u) ande[ ln^Gs(u)&]av,
which confirm the essentially log-normal character of t
probability distribution@20#, in agreement with Cardy and
Jacobsen. It is thus necessary to perform averages ov
larger number of samples for@^Gs(u)&#av than for
@ ln^Gs(u)&#av to get the same relative errors. A cumulant e
pansion enables us to reconstruct@^Gs(u)&#av and to com-
pare to the values obtained by averaging directly over
samples. The results in Fig. 1 strengthen the credibility of
direct average and also clearly show that the cumulant
pansion up to fourth order still strongly fluctuates compa
to @^Gs(u)&#av .

We will now concentrate on the results that follow fro
the assumption of conformal covariance of the averaged
relation functions. In the infinite complex planez5x1 iy at
the critical point, the correlation function exhibits the usu

algebraic decay@^Gs(r )&#av5const3r 22xs
b
, where r 5uzu.

Under a conformal mappingw(z), the correlation functions
of a conformally invariant 2D system transforms accordi
to

Gs~w1 ,w2!5uw8~z1!u2xs
b
uw8~z2!u2xs

b
Gs~z1 ,z2!. ~2!

The logarithmic tranformationw5L/2p lnz is known to map
the z plane onto an infinite stripw5u1 iv of width L with
periodic boundary conditions in the transverse direction. A

FIG. 1. Average correlation function, most probable value, a
fourth-order cumulant expansion, obtained from 63 436 replicas
a strip of sizeL56 (r 510).
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plying Eq. ~2! in the random system, one gets the usual
ponential decay along the strip@^Gs(u)&#av5const
3exp@2(2p/L)xs

bu#, where the scaling indexxs
b can be de-

duced from a semilog plot. For each strip size (L5229),
we realized 40 000 disorder configurations in four indepe
dent runs, which allowed us to define mean values and e
bars. The exponent follows from an exponential fit in t
range u55 –10L. For r 510, the resulting values plotted
againstL21, converge in theL→` limit, towards the final
estimatexs

b50.149660.0009 shown in Fig. 2. A consisten
value is obtained in the caser 520, while in the weak dis-
order limit the behavior is drastically different, and stron
crossover effects would be expected for larger strip sizes

Another restricted geometry, already used in previo
FSS MC simulations, is the square geometry. The Schw
Christoffel mapping z5(a/2K)F(z,k), z5sn@(2Kz)/a#
[sn$@(2Kz)/a#,k%, whereF(z,k) is the elliptic integral of
the first kind and sn(z,k) is the Jacobian elliptic sine@21#,
transforms the upper half plane inside the interior of a squ
2a/2<Re(z)<a/2,0<Im(z)<a. Here, K[K(k) is the
complete elliptical integral of the first kind and the modul
k is a solution ofK(k)/K(A12k2)5 1

2 . The correlation func-
tion in the semi-infinite geometry is known to take the for
@22#

Gs~z1 ,z!5const3~y1y!2xs
b
c~v!, ~3!

where the dependence onv5y1y/uz12zu2 of the universal
scaling functionc is constrained by the special conform
transformation. In the random situation one can again use
transformation equation~2! to write the correlations betwee
z15 i , close to a side of the square, and any point inside it
follows:

@^Gs~z!&#av5const3@ uz8~z!uIm„z~z!…#2xs
b
c~v!. ~4!

Taking the logarithm of both sides, the bulk critical expone
xs

b can thus be deduced from a linear fit alongv5const
curves in the square:

ln@^Gs~z!&#av5const82xs
b lnk~z!1 lnc~v!, ~5!

with k(z)[Im„z(z)…u@12z2(z)#@12k2z2(z)#u21/2.
The results are shown in Fig. 3 (r 510), in which the

Swendsen-Wang algorithm has been used@23# for systems of
size 1013101 and an average was performed over 3000 d

FIG. 2. Magnetic scaling index deduced from the algebraic
cay of the average correlation function along the strip of sizeL as a
function of L21.
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order realizations. Averaging the results at differentv ’s, one
obtains xs

b50.15260.003. Again, a compatible value i
found atr 520 while it disagrees atr 52.

Owing to the unknown scaling functionc(v), the deter-
mination is not extremely accurate, since a few points
used for the fits. It can nevertheless be improved if one c
siders the magnetization profile inside a square with fix
boundary conditions. Since it is a one-point function, its d
cay from the distance to the surface in the semi-infinite g
ometry is fixed, up to a constant prefactor@^s(z)&#av

;y2xs
b
. The local order parameter is defined, according

Ref. @24#, as the probability for the spin at sitez in the
square, to belong to the majority orientation. After th
Schwarz-Christoffel mapping, one gets the following expre
sion for the average profile in the square geometry:

@^s~z!&#av5const3SAu12z2~z!uu12k2z2~z!u
Im„z~z!…

D xs
b

. ~6!

This expression, of the form@^s(z)&#av5@ f (z)/y#xs
b
, holds

for any point inside the square. It allows an accurate de
mination of the critical exponent (xs

b50.149960.0001 for
r 510) via a log-log plot shown in Fig. 4. We note that in th
caser 52, the corresponding curve exhibits a crossover b
tween small and large distances, with clearly different exp
nents close to 0.128 and 0.160, respectively.

-
FIG. 3. Rescaled correlation function along sixv5const curves

in the square (r 510).

FIG. 4. Rescaled magnetization and energy density profiles
side the square for 3000 disorder realizations (r 510). The power
law fits are over 1002 data points.
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A summary of our results, compared to independent F
determinations of the magnetic scaling index, are given
Table I. Apart from the crossover regime atr 52, the agree-
ment is quite good and clearly in favor of the validity of th
assumption of conformal covariance of correlation functio
and profilesat the random fixed point. On the other hand, in
the crossover regime, in which the fixed point is not y
reached, the different techniques lead to different results,

TABLE I. Comparison between FSS and CI determinations
the bulk magnetic scaling dimension in theq58 RBPM. The quan-
tity that was studied is indicated in the table as well as the geom
and the numerical technique.

FSS~MC! Conformal invariance

Square Strip Strip Square

SWa Wb TMc TMd SW
@^Mb&# @^Mb&# @^G(u)&# @^G(u)&# @^G(z)&#e @^s(z)&#e

r 510 0.153~1!

0.153~3! 0.152~2! 0.1496~9! 0.152~3! 0.1499~1!

r 520 0.150~1!

0.152~2! 0.1474~19! 0.146~7! 0.1462~2!

r 52 0.167~2! 0.142~1!

0.158~3! 0.142~4! 0.1256~5! 0.283~21! 0.128–0.160

aMC simulations ~Swendsen-Wang algorithm,a<100, ;500
samples! from Ref. @14#.
bMC simulations~Wolff algorithm, ;105 samples! from Ref. @15#.
The two values refer to fits in the rangesa5202100 and 50–200.
cTM calculations (L5127, 102 samples! from Refs.@6,16#.
dTM calculations (L5229, 43104 samples!, this work.
eMC simulations (a5101, 33103 samples!, this work.
l.
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none of them has a real meaning, since they would pres
ably be affected by strong crossover effects at very la
sizes. Since the study of the critical profile with fixed boun
ary conditions inside the square is very accurate, the ene
scaling indexx«

b5d21/n can also be obtained through th
same technique. This dimension has been calculated in
vious studies@6,14# but different results were obtained, po
sibly contradicting the inequalityx«

b>1. Here, the local en-
ergy density@^«(z)&#av is computed by the average ove
four bonds on each plaquette. It includes a constant b
contribution@^«0&#av , which is obtained by the extrapolatio
to y→` of the profiles with free and fixed boundary cond
tions ~BC! , respectively. Atr 510, both BC’s yield consis-
tent values @^«0&#av50.6974 and 0.6978. The quantit
D@^«(z)&#av5@^«(z)&#av20.6976 is then studied as in Eq
~6!, and leads tox«

b51.01160.008 ~Fig. 4!. Since the nu-
merical data are very small, there is an important dispers
but the accuracy of the fit remains correct due to the h
number of data points (1002).

In this Rapid Communication, we have shown that co
formal invariance techniques can be successfully applied
random systems, and that they lead to refined investigat
of the critical properties. The accuracy, compared to stand
techniques, is increased, especially through the magne
tion profile inside a square where all of the lattice poin
enter the fit. The critical exponents are finally quite close
the rational valuesxs

b53/20 andx«
b51.

We thank L. Turban for helpful advice, and M. Henk
and J. L. Cardy for stimulating discussions. The compu
tions were performed at the CNUSC in Montpellier und
Project No. C981009 and the CCH in Nancy. The Labo
toire de Physique des Mate´riaux is a UnitéMixte de Recher-
che CNRS No. 7556.
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